

ANIMA Ops and Security

ANIMA Ops and Security

Authors

INFINITYS SpA

State

Final

Creation Date
01.09.2025

Last Update

06.10.2025

Version
4.0

1

Index

1 [Devices Side] Security .. 2

1.1 SAMSUNG® Tizen OS .. 2

2 [Backend Side] Asset Security .. 5

2.1 Authentication & Authorization .. 5

2.2 Penetration Test(s) and Vulnerability Assessment ... 6

2.3 Software/Firmware Assets Management ... 6

3 Development Operations .. 7

4 Release Management .. 8

5 System Redundancy for Business Continuity .. 10

6 Users, Administrators and End Users Support .. 10

7 GDPR - Right to be Forgotten ... 10

2

1 [Devices Side] Security

On the device side the first distinction to be made is about the nature of the device itself, we will say the HW/OS

supported. Listed:

• SAMSUNG® Tizen OS.

• GNU/Linux (Ubuntu distro).

• MICROSOFT® Windows.

• Google® Android.

1.1 SAMSUNG® Tizen OS

Applications in Tizen can be written with native code using C/C++ or HTML5/JavaScript/CSS. Like other mobile

platforms, Tizen supports three kinds of applications.

• Native Applications: written in C/C++.

• Web Applications: written on HTML5/JavaScript/CSS. This

is the type of application chosen by ACS for the

development of ANIMA.
• Hybrid Applications: having web components as well as a

native component.

The Tizen architecture consists of three layers. At the bottom we

have the Linux Kernel & Drivers. On top of that, we have the Tizen

Core layer which acts as an interface between Application

Framework layer and the Kernel layer. It facilitates access to device
hardware and other features. The Application Framework in the

Core layer contains all the middleware, hardware-related services

and provides the set of APIs needed for developing Native, Web or

Hybrid Apps.

The Framework includes Tizen Native Framework that facilitates
the running of Native and Hybrid Applications and the Tizen Web

Framework which provides the Web Runtime (WRT) where the Web

Applications run. The Web Apps make use of Web API which consist

of HTML5 API’s as well as a set of Device APIs provided by Tizen

which is protected by Content Security Policy (CSP) and Privileges.

The Web API also includes miscellaneous APIs like WebGL,

Viewport Metatag, Typed Array etc.

Like permissions in Android, Tizen relies on privileges to enforce a least privilege model. Additionally, Tizen requires

application signing which ensures nobody can replace/update the installed application except for the original author

and each application is sandboxed by SMACK (Simplified Mandatory Access Control Kernel).

The main principles of this Security Model are:

3

• Non root applications:

o All applications run under same non-root user ID.

o Most of the middleware and daemons will run as non-root.

• Application Sandboxing:

o All applications are sandboxed by SMACK.

o An application is allowed to read/write files only on its home directory and in shared media directory

(/opt/usr/media)

o Each application is unable to send IPC and sockets messages, r/w other application files.
• Content Security Framework (CSF):

o Set of APIs/hooks used to create security-related services.

o These are intended for AV Solutions.

o Two types of engines: Scan Engine and Site Engine.

o Scan Engine scans Data and Application for malicious behavior.

o Site Engine scans URLs and blocks malicious URLs.

• Application Signing:

o Application can be signed by Authors as well as Distributors.
• Permission Model/Least privilege:

o All applications will have manifest/config file describing privileges.

o Native apps use manifest.xml.

o Web apps use config.xml.

o Manifest files describe SMACK labels and rule as well.

• Content Security Policy for Web Apps:

o For Web Applications, Policy or Content Security Policy is defined in the config.xml file.

• Encrypt HTML/JS/CSS stored in Device:

o Encrypts at Install time and decrypts at runtime.

Tizen’s sandbox is called Simplified Mandatory Access Control Kernel (SMACK). The basic rule of application sandbox

is “what's mine is mine; what's yours is yours.” SMACK allows you to add controlled exception to this basic rule.

SMACK is a kernel level Linux security module that determines how processes interact with each other.

In Tizen, every application has its own SMACK label. These labels identify the application and provide access controls.

SMACK Terms:

• Subject: Any Running Process (Have Smack

Label).

• Object: File, IPC, Sockets, Process.
• Access: Read (r), Write (w), Execute (e),

Append (a), Lock (l), Transmute (t).

In SMACK, the subject can only access an object if the

labels match or if there exists permission that grant

access to the requested resource. A subject is an

active entity while an object is a passive entity, which
includes files, directories, IPC, sockets and processes.

4

SMACK ensures that applications are sandboxed and one application cannot access the files and data of other

application and vice versa. However SMACK allows controlled exceptions to this. The interesting thing about SMACK

rules is that Tizen got about 41,000 SMACK rules in Tizen version 2.2.1. The number of SMACK rules is so huge that,

there is a high chance that developers may mess up. So, in Tizen 3 onwards they will introduce Cynara and a Smack

Three domain Model.

For Tizen applications, privileges are like permissions for Android applications. To use different APIs, appropriate

privileges should be defined. The following are the used permissions, as of the date of this document, by the ANIMA

APP:

 <tizen:privilege name="http://tizen.org/privilege/tv.audio"/>

 <tizen:privilege name="http://tizen.org/privilege/tv.window"/>
 <tizen:privilege name="http://tizen.org/privilege/unlimitedstorage"/>

 <tizen:privilege name="http://tizen.org/privilege/download"/>

 <tizen:privilege name="http://tizen.org/privilege/internet"/>

 <tizen:privilege name="http://tizen.org/privilege/filesystem.read"/>

 <tizen:privilege name="http://tizen.org/privilege/filesystem.write"/>

 <tizen:privilege name="http://tizen.org/privilege/content.read"/>

 <tizen:privilege name="http://tizen.org/privilege/content.write"/>

 <tizen:privilege name="http://tizen.org/privilege/tv.display"/>
 <tizen:privilege name="http://tizen.org/privilege/tv.inputdevice"/>

 <tizen:privilege name="http://developer.samsung.com/privilege/network.public"/>

 <tizen:privilege name="http://developer.samsung.com/privilege/b2bcontrol"/>

 <tizen:privilege name="http://developer.samsung.com/privilege/b2bsyncplay"/>

Tizen Web Runtime (WRT) is based on WebKit2 on top of which, the web apps run. WebKit2 is a new API layer over

WebKit. It supports split process model like the Google® Chrome tabs. In Chrome, each tab is a separate independent

process, similarly in Tizen WRT, every web application runs as a separate process. So, if anything goes wrong in one
process, it should not affect other running processes. In WRT, every web app runs inside a sandbox. One of the main

reasons is that WebKit is known to have a lot of vulnerabilities. A lot of them are still being reported and coming up.

To prevent the impact of these, Tizen make use of the split process model and the application sandbox.

In addition to Tizen OS, major vendors provide additional protection with their own proprietary solutions. As an

example, Samsung large format displays are shipped with Samsung Knox Security which provides, among the others:

• A tamper resistant hardware

• Dedicated execution environment for applications that handle sensitive data

• All sensitive data is stored in secure storage encrypted with device’s unique hardware key.

• Use internationally recognized and standardized cryptographic technologies

• A variety of authentication methods including PIN, pattern, and password, and combine them to deliver

strong user authentication

• Proactively deploy solutions that detect and prevent illegal tampering attempts on our products to
maintain their safety and integrity

• A strict security development process throughout the entire product lifecycle

5

• Apply the latest security updates and patches to combat attacks from the ever changing malware and

hacking landscape

2 [Backend Side] Asset Security

ANIMA SaaS offering is based on many assets:

• Infrastructure: this asset group includes all connectivity assets, network level devices and any other devices

on which base, application server(s) grant service over the internet.

• Application Server: this asset group includes web server used both to manage HTTPS protocol (pages) and

the execution of ANIMA business logic.

• Database Server: this asset group includes all server(s) managing data persistence layer, both relational

(RDBMS) and media content (*.mp4, *.jpeg…).
• File Server: this asset group includes all server(s) managing static assets like media contents (*.mp4,

*.jpeg…).

2.1 Authentication & Authorization

ANIMA authentication system is based on OpenIddict, running on ACS Cloud Servers and managed by ACS.

OpenIddict is an OAuth 2.0/OpenID Connect framework for .NET Core.

It is used to:

• protect ANIMA resources.

• authenticate ANIMA users using a local account store.

• provide session management.

• manage and authenticate ANIMA clients such as displays.
• issue identity and access tokens to ANIMA clients.

• validate tokens.

Administration and access to assets are managed using many fine-grained policies:

• 2 factor authentications: ACS directory is a Microsoft 365 Business directory, where 2FA is defined as

mandatory for all administrator-level accounts.

• Segregation of Duties: inside ACS, Infrastructure administrators are persons, belonging to the “Cloud Team”,

while Application Server and Database Server are administered by the “DEV Team”. Access to RDMBS is

based on application-users that are different from database owner user. The responsibility of this owner

belongs to Cloud Team.

Regarding access to the web app of devices and content, say the part of the solution that the content managers

specified by the customer must have access, ACS suggests using the federation feature between directories.

Specifically, the suggestion is to use the integration functionality between ANIMA and the client's user directory. In

this way:

• content managers can use their corporate account for access, reducing the complexity of use.

6

• Credential management policies (password policies) are the same as those used at the enterprise-wide

level.

• Any credential revocation at the enterprise level also impacts, immediately, the ANIMA system.

If integration with the corporate directory is not possible, ANIMA supports its own authentication module, with local

identity, which provides the following features:

• The password length must be 12 chars or more.

• password complexity:

o 1 or more uppercase char.

o 1 or more lowercase char.

o 1 or more special char.

o 1 or more number.
• password change is enforced at least every 60 days.

• ANIMA enforces new passwords not to correspond to the last 5 passwords used.

• login trace: after a successful login, user sees where (IP) and when the last successful login has been done.

• failure trace: latest 10 unsuccessful login attempts are kept in logs, including IP source information.

2.2 Penetration Test(s) and Vulnerability Assessment

At infrastructure level, ACS executes, on a monthly base “gray box” tests, identifying target systems and goals with

the help of pre-shared background and system information.

In the last couple of years, ACS work has created a structured base of tests (“test suite”) using FOSS tools, in

particular Metasploit Framework https://www.metasploit.com/ using Kali Linux distro https://www.kali.org/. On

every test repetition:

• a subset of colleagues is defined as the „attackers team“;

• first of all „attackers team“ creates the test environment beginning from a „black box“ environment,

implementing it with highly relevant insider-level information;

• „attackers team“ executes tests;

• Assessment results is shared between „attackers“ team with ACS Top Executives, who shares this content

with Cloud Team;

• Immediately, Cloud Team works on „patching“ and/or changing software/hardware configuration for

„closing“ detected vulnerabilities;

2.3 Software/Firmware Assets Management

ANIMA SaaS service delivery is based on different assets:

• Server Operating Systems: every machine involved in service delivery is virtual, based on Windows Server

OS and GNU/Linux OS. Following producer(s) guidelines both are regularly updated on a monthly schedule.
Moreover, ACS certified technicians daily follow security bulletins, i.e.:

o https://cve.mitre.org/

o https://portal.msrc.microsoft.com/en-us/security-guidance

o https://access.redhat.com/security/security-updates/#/

https://www.metasploit.com/
https://www.kali.org/
https://cve.mitre.org/
https://portal.msrc.microsoft.com/en-us/security-guidance
https://access.redhat.com/security/security-updates/#/

7

identifying relevant issues/vulnerabilities and applying patches on the shortest available timeframe, if

needed. Active monitoring is done with the help of advanced detection and response platforms such as

SentinelOne by ACS Security Operation Center, active 24/7.

• Infrastructure devices OS/firmware: for infrastructure devices (physical router/switches, disks array…), ACS

certified technicians follow producer(s) guideline and maintenance best practices, applying any security

patch on the shortest available timeframe.

3 Development Operations

The software development process for Infinitys follows the Agile software development methodology. It advocates

adaptive planning, evolutionary development, prompt delivery, and continual improvement, and it encourages rapid

and flexible responses to change. The agile principles followed by ACS are:

• Customer satisfaction by early and continuous delivery of valuable software.

• Deliver working software frequently.

• Close, daily cooperation between “businesspeople” and developers.

• Projects are built around motivated individuals.

• Face-to-face conversation as the best form of communication.

• Working software is the primary measure of progress.

• Continuous attention to technical excellence and good design.

• Simplicity is essential.

• Regularly, the team reflects on how to become more effective and adjusts accordingly.

Software development activities are organized in sprints of two weeks, where each sprint starts with a sprint

planning meeting and ends with a sprint review meeting and a release of the developed software. The sprint planning

meeting is held between all software developers. Whereas, the sprint review meeting is organized as a

demonstration of the developed software, where all developers and all stakeholders participate.

Development, done primarily in Typescript/Javascript and C# programming languages makes extensive use of static

and dynamic analysis tools.

During the daily activity, static analysis is performed locally using Visual Studio (C#) and Visual Studio Code

(Typescript /Javascript) development tools.

If no major critical issues emerge from the analysis, an automated pipeline compiles the project and releases it to

the testing environment. The compilation relies on the static validation tools: Net Compiler (C#) and ESLint

(Typescript /Javascript). Unit tests performed through Jest (Typescript /Javascript) and NUnit (C#) that facilitate

functional verification are performed and constantly updated. Depending on the required functionality and its

complexity, a Test-Driven Design is also adopted.

Once development is completed, the code is uploaded to the versioning system and:

• further static analysis is performed using the SonarQube tool.

• tests are re-run overnight (nightly build) via automatic pipeline.

8

If no major critical issues emerge from the analysis, the pipeline proceeds with the execution of End-to-End (E2E)

tests via Playwright software to check for functional regressions and if no errors are present, it proceeds with the

release to the test environment. The E2E test loads a standard test environment, different browsers and applications

that run on the devices and automatically reproduces the main interactions of a real user on the ANIMA software,

providing images, videos, and reporting of any results that differ from the expected ones.

During execution in the test environment and in production, the ANIMA software is monitored by the development

team using the three main observability tools:

• Logging through Serilog.

• Metrics through Prometheus and Grafana.

• Tracing through OpenTelemetry.

ANIMA workflow is based on Microsoft SDL methodology https://www.microsoft.com/en-

us/securityengineering/sdl/

Among all practices, the actual implementation of the process in ANIMA is structured on a subset of the whole
methodology:

• Practice #2 - Define Security Requirements: the whole system has been designed from the beginning with

security in mind, following Microsoft best practices for microservices development which includes

authentication and authorization with well-known frameworks like IdentityServer and OpenIdDict. Both

frameworks have been designed to ensure standard-compliant OAuth 2.0/OpenID Connect servers.

Authorization and logging have been implemented using middleware to reduce the maintenance and
potential errors on new developments.

• Practice #5 - Establish Design Requirements: a common agreement has been found on authentication

protocols (OAuth2.0), logging (Serilog) and cryptography (asymmetric).

• Practice #6 - Define and Use Cryptography Standards: Microsoft SDL Cryptographic Recommendations

document is used as a reference.

• Practice #8 - Use Approved Tools: the same development tools are used across the whole development

team as well as static and dynamic analyzers. All the adopted frameworks use Long Term Service versions

to ensure proper bug and security fixes. All dependencies are updated regularly to minimize security risks.
• Practice #11 - Perform Penetration Testing: as described in section 2.2

4 Release Management

The release management of ACS follows these principles:

• The work is planned in time-boxed iterations of two weeks.

• A backlog of features is maintained in prioritized order, and the priority is reviewed every iteration.

• At the start of each iteration the highest value items are selected from the backlog and a detailed planning

for those items is done.

• Integration/release is done after each iteration.

https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/

9

The goal of having features completed at the end of each iteration allows us to determine what will be available to

ship. The prioritization of the backlog allows us to have the most important features developed first, so that the

release date can be met. The always shippable goal means that we can, if needed, accelerate our release schedule.

This agile approach enables better release planning by combining planning disciplines, which helps to focus on the

highest value work, and engineering discipline, which helps to identify and fix problems early, giving us more
predictability. This practice makes shipping a release a decision that our product owners can make without worrying

if the team will meet a date far in the future.

To integrate produced software as often as possible, and to test and verify it frequently, after each iteration a new

release of Infinitys is published. This usually happens on Monday afternoon and is published on our BETA system.

Specialized software testers verify that the software works correctly and meets the requested requirements. After
the software is verified and potential problems are fixed, usually every second Monday in late afternoon, the rollout

on PRODUCTION system is done.

Since one of our goals is to keep quality always high, in every state of our software development process, on serious

problems it is possible that a hotfix is released outside of this release plan. This will be decided at each occurrence

and depending on the impact of the bug. Normal, non-blocking bugs are included in the normal release process of
the software.

To keep track of issues notified by our users, the RADIX service desk management tool is used

(https://www.infominds.eu/radixplus?lang=it).

The ANIMA solution provides an internal communications management feature for its user community. On each

update, ACS publishes news that, through notification, makes the community aware of the most interesting

information related to the update itself. At the user's request, further, this communication can also be received by e-

mail.

ACS defines different maintenance time windows:

WHAT WHEN COMMUNICATION

FORTNIGHTLY UPDATE
- new version of the software.

Monday (2 or 3 mondays per
month, depending on the
actual calendar)

9 p.m. to 10 p.m. (UTC+1, Rome)

Only in cases that differ from this rule.

PLANNED UPGRADE
- modification of server infrastructure.
- network configuration upgrade.

- expansion of available storage.

Monday to Friday,
from 1 p.m. to 2. p.m. (UTC+1,
Rome).

Warning message through the ANIMA notification
system, at least 48 hours before the update.

HOTFIX
- Vulnerability reported on one of the

components.
- Software bug resulting in corruption or
loss of data.

When needed. Warning message through the ANIMA notification
system, with as much notice as possible,

reasonably with a few hours' notice.

During this time windows:

https://www.infominds.eu/radixplus?lang=it

10

• the displays/players will play, without any interruption, the scheduled content (e.g. pictures, videos).

• in case the layouts provide widgets that require updated data from the Internet, they may not have access

to the data themselves and activate, where applicable, the fallback behavior for loss of connectivity.

• the backend portal (https://cockpit.infinitys.it) may not be accessible.

Keep in mind that updates made do not always require downtime of services and, further, that outage times are
typically limited to a few minutes, always within the above-mentioned window.

5 System Redundancy for Business Continuity

ANIMA SaaS is mainly based on a group of virtual machines with a „two level“ affordability:

• Application redundancy: all application components are based on multiple battery-based application servers

that can be reached via virtual balancers or clustered solutions capable of making the system scalable while

also ensuring the continuation of the activities in case of block of an application server or database server

without the need for any intervention. These battery-based servers, on the other hand, are linked to a

monitoring system capable of verifying service availability to guarantee restart in the shortest possible time.

• Virtual Environment Redundancy: in addition to the guarantees of application balancing/failover, the

features offered by the virtualization platform guarantee business continuity solutions allowing the

automatic restart of virtual machines, hot migration between the various physical servers, load balancing
on the servers and offer a series of tools capable of controlling and monitoring the system itself.

6 Users, Administrators and End Users Support

ACS Service Desk is ACS the single point of contact for all users: end users (ex. store manager), content manager(s),

admin(s). Multiple access channels are available:

• Phone: +39 0471 063333

• Mail: support@infinitys.it

Working hour for ACS service desk is from 8:00 AM to 5:00 PM (CET), Monday to Friday (excluding italian national,

Trentino Alto Adige and Bolzano province local holidays).

7 GDPR - Right to be Forgotten

In the European Union, the General Data Protection Regulation (GDPR), in force since May 2018, regulates the right

to be forgotten, in Articles 17, 21 and 22.

The ANIMA solution provides specific functionality related to the right to be forgotten. In case a user requests it, a

user with ADMIN rights can activate the appropriate procedure.

The specific functionalities ensure the consistency of data archives, media and programming, while providing the

possibility to permanently delete data related to the affected account.

mailto:support@infinitys.it

11

In addition to the execution by an ADMIN, we will say in a manual way, it is possible to define within ANIMA some

policies that automatically provide for this action, in example after 365 days from the date of last login performed.

